Papers
Topics
Authors
Recent
2000 character limit reached

EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices (2502.06493v1)

Published 10 Feb 2025 in cs.SE

Abstract: The widespread adoption of machine learning on edge devices, such as mobile phones, laptops, IoT devices, etc., has enabled real-time AI applications in resource-constrained environments. Existing solutions for managing computational resources often focus narrowly on accuracy or energy efficiency, failing to adapt dynamically to varying workloads. Furthermore, the existing system lack robust mechanisms to adaptively balance CPU utilization, leading to inefficiencies in resource-constrained scenarios like real-time traffic monitoring. To address these limitations, we propose a self-adaptive approach that optimizes CPU utilization and resource management on edge devices. Our approach, EdgeMLBalancer balances between models through dynamic switching, guided by real-time CPU usage monitoring across processor cores. Tested on real-time traffic data, the approach adapts object detection models based on CPU usage, ensuring efficient resource utilization. The approach leverages epsilon-greedy strategy which promotes fairness and prevents resource starvation, maintaining system robustness. The results of our evaluation demonstrate significant improvements by balancing computational efficiency and accuracy, highlighting the approach's ability to adapt seamlessly to varying workloads. This work lays the groundwork for further advancements in self-adaptation for resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.