Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Expressiveness of Rational ReLU Neural Networks With Bounded Depth (2502.06283v2)

Published 10 Feb 2025 in cs.LG and cs.DM

Abstract: To confirm that the expressive power of ReLU neural networks grows with their depth, the function $F_n = \max {0,x_1,\ldots,x_n}$ has been considered in the literature. A conjecture by Hertrich, Basu, Di Summa, and Skutella [NeurIPS 2021] states that any ReLU network that exactly represents $F_n$ has at least $\lceil\log_2 (n+1)\rceil$ hidden layers. The conjecture has recently been confirmed for networks with integer weights by Haase, Hertrich, and Loho [ICLR 2023]. We follow up on this line of research and show that, within ReLU networks whose weights are decimal fractions, $F_n$ can only be represented by networks with at least $\lceil\log_3 (n+1)\rceil$ hidden layers. Moreover, if all weights are $N$-ary fractions, then $F_n$ can only be represented by networks with at least $\Omega( \frac{\ln n}{\ln \ln N})$ layers. These results are a partial confirmation of the above conjecture for rational ReLU networks, and provide the first non-constant lower bound on the depth of practically relevant ReLU networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.