Better Neural Network Expressivity: Subdividing the Simplex (2505.14338v1)
Abstract: This work studies the expressivity of ReLU neural networks with a focus on their depth. A sequence of previous works showed that $\lceil \log_2(n+1) \rceil$ hidden layers are sufficient to compute all continuous piecewise linear (CPWL) functions on $\mathbb{R}n$. Hertrich, Basu, Di Summa, and Skutella (NeurIPS'21) conjectured that this result is optimal in the sense that there are CPWL functions on $\mathbb{R}n$, like the maximum function, that require this depth. We disprove the conjecture and show that $\lceil\log_3(n-1)\rceil+1$ hidden layers are sufficient to compute all CPWL functions on $\mathbb{R}n$. A key step in the proof is that ReLU neural networks with two hidden layers can exactly represent the maximum function of five inputs. More generally, we show that $\lceil\log_3(n-2)\rceil+1$ hidden layers are sufficient to compute the maximum of $n\geq 4$ numbers. Our constructions almost match the $\lceil\log_3(n)\rceil$ lower bound of Averkov, Hojny, and Merkert (ICLR'25) in the special case of ReLU networks with weights that are decimal fractions. The constructions have a geometric interpretation via polyhedral subdivisions of the simplex into ``easier'' polytopes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.