Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

XNet-Enhanced Deep BSDE Method and Numerical Analysis (2502.06238v1)

Published 10 Feb 2025 in cs.CE

Abstract: Solving high-dimensional semilinear parabolic partial differential equations (PDEs) challenges traditional numerical methods due to the "curse of dimensionality." Deep learning, particularly through the Deep BSDE method, offers a promising alternative by leveraging neural networks' capability to approximate high-dimensional functions. This paper introduces a novel network architecture, XNet, which significantly enhances the computational efficiency and accuracy of the Deep BSDE method. XNet demonstrates superior approximation capabilities with fewer parameters, addressing the trade-off between approximation and optimization errors found in existing methods. We detail the implementation of XNet within the Deep BSDE framework and present results that show marked improvements in solving high-dimensional PDEs, potentially setting a new standard for such computations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.