Faster Approximation Algorithms for k-Center via Data Reduction
Abstract: We study efficient algorithms for the Euclidean $k$-Center problem, focusing on the regime of large $k$. We take the approach of data reduction by considering $\alpha$-coreset, which is a small subset $S$ of the dataset $P$ such that any $\beta$-approximation on $S$ is an $(\alpha + \beta)$-approximation on $P$. We give efficient algorithms to construct coresets whose size is $k \cdot o(n)$, which immediately speeds up existing approximation algorithms. Notably, we obtain a near-linear time $O(1)$-approximation when $k = nc$ for any $0 < c < 1$. We validate the performance of our coresets on real-world datasets with large $k$, and we observe that the coreset speeds up the well-known Gonzalez algorithm by up to $4$ times, while still achieving similar clustering cost. Technically, one of our coreset results is based on a new efficient construction of consistent hashing with competitive parameters. This general tool may be of independent interest for algorithm design in high dimensional Euclidean spaces.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.