Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Extended Histogram-based Outlier Score (EHBOS) (2502.05719v1)

Published 8 Feb 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Histogram-Based Outlier Score (HBOS) is a widely used outlier or anomaly detection method known for its computational efficiency and simplicity. However, its assumption of feature independence limits its ability to detect anomalies in datasets where interactions between features are critical. In this paper, we propose the Extended Histogram-Based Outlier Score (EHBOS), which enhances HBOS by incorporating two-dimensional histograms to capture dependencies between feature pairs. This extension allows EHBOS to identify contextual and dependency-driven anomalies that HBOS fails to detect. We evaluate EHBOS on 17 benchmark datasets, demonstrating its effectiveness and robustness across diverse anomaly detection scenarios. EHBOS outperforms HBOS on several datasets, particularly those where feature interactions are critical in defining the anomaly structure, achieving notable improvements in ROC AUC. These results highlight that EHBOS can be a valuable extension to HBOS, with the ability to model complex feature dependencies. EHBOS offers a powerful new tool for anomaly detection, particularly in datasets where contextual or relational anomalies play a significant role.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.