Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Data-Driven Distributionally Robust Mixed-Integer Control through Lifted Control Policy (2502.05469v1)

Published 8 Feb 2025 in math.OC, cs.SY, and eess.SY

Abstract: This paper investigates the finite-horizon distributionally robust mixed-integer control (DRMIC) of uncertain linear systems. However, deriving an optimal causal feedback control policy to this DRMIC problem is computationally formidable for most ambiguity sets. To address the computational challenge, we propose a novel distributionally robust lifted control policy (DR-LCP) method to derive a high-quality approximate solution to this DRMIC problem for a rich class of Wasserstein metric-based ambiguity sets, including the Wasserstein ambiguity set and its variants. In theory, we analyze the asymptotic performance and establish a tight non-asymptotic bound of the proposed method. In numerical experiments, the proposed DR-LCP method empirically demonstrates superior performance compared with existing methods in the literature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.