MoFM: A Large-Scale Human Motion Foundation Model (2502.05432v2)
Abstract: Foundation Models (FM) have increasingly drawn the attention of researchers due to their scalability and generalization across diverse tasks. Inspired by the success of FMs and the principles that have driven advancements in LLMs, we introduce MoFM as a novel Motion Foundation Model. MoFM is designed for the semantic understanding of complex human motions in both time and space. To facilitate large-scale training, MotionBook, a comprehensive human motion dictionary of discretized motions is designed and employed. MotionBook utilizes Thermal Cubes to capture spatio-temporal motion heatmaps, applying principles from discrete variational models to encode human movements into discrete units for a more efficient and scalable representation. MoFM, trained on a large corpus of motion data, provides a foundational backbone adaptable to diverse downstream tasks, supporting paradigms such as one-shot, unsupervised, and supervised tasks. This versatility makes MoFM well-suited for a wide range of motion-based applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.