Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Analyzing public sentiment to gauge key stock events and determine volatility in conjunction with time and options premiums (2502.05403v1)

Published 8 Feb 2025 in cs.LG

Abstract: Analyzing stocks and making higher accurate predictions on where the price is heading continues to become more and more challenging therefore, we designed a new financial algorithm that leverages social media sentiment analysis to enhance the prediction of key stock earnings and associated volatility. Our model integrates sentiment analysis and data retrieval techniques to extract critical information from social media, analyze company financials, and compare sentiments between Wall Street and the general public. This approach aims to provide investors with timely data to execute trades based on key events, rather than relying on long-term stock holding strategies. The stock market is characterized by rapid data flow and fluctuating community sentiments, which can significantly impact trading outcomes. Stock forecasting is complex given its stochastic dynamic. Standard traditional prediction methods often overlook key events and media engagement, focusing its practice into long-term investment options. Our research seeks to change the stochastic dynamic to a more predictable environment by examining the impact of media on stock volatility, understanding and identifying sentiment differences between Wall Street and retail investors, and evaluating the impact of various media networks in predicting earning reports.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: