Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles
Abstract: Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad \quad \quad \Delta _x(B)2d_x(A)2+\Delta _x(A)2d_x(B)2\geq \frac{(\langle {A,B}x, x \rangle -{\langle Ax, x \rangle,\langle Bx, x \rangle})2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])2}{2} \end{align*} and \begin{align*} (2) \quad \quad \quad \quad \Delta _x(A)\Delta _x(B)\geq \frac{\sqrt{|(\langle {A,B}x, x \rangle -{\langle Ax, x \rangle,\langle Bx, x \rangle})2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])2|}}{2}, \end{align*} where $\Delta _x(A):= |Ax-\langle Ax, x \rangle x |$, $d_x(A):= \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle2}$, $[A,B] := AB-BA$, ${A,B}:= AB+BA$, ${\langle Ax, x \rangle,\langle Bx, x \rangle}:= \langle Ax, x \rangle\langle Bx, x \rangle +\langle Bx, x \rangle\langle Ax, x \rangle$, $[\langle Ax, x \rangle,\langle Bx, x \rangle]:= \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle$. We call Inequalities (1) and (2) as noncommutative Heisenberg-Robertson-Schrodinger uncertainty principles. They reduce to the Heisenberg-Robertson-Schrodinger uncertainty principle (derived by Schrodinger in 1930) whenever $\mathcal{A}=\mathbb{C}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.