Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Partial Information Rate Decomposition (2502.04550v3)

Published 6 Feb 2025 in stat.ME

Abstract: Partial Information Decomposition (PID) is a principled and flexible method to unveil complex high-order interactions in multi-unit network systems. Though being defined exclusively for random variables, PID is ubiquitously applied to multivariate time series taken as realizations of random processes with temporal statistical structure. Here, to overcome the incorrect depiction of high-order effects by PID schemes applied to dynamic networks, we introduce the framework of Partial Information Rate Decomposition (PIRD). PIRD is first formalized applying lattice theory to decompose the information shared dynamically between a target random process and a set of source processes, and then implemented for Gaussian processes through a spectral expansion of information rates. The new framework is validated in simulated network systems and demonstrated in the practical analysis of time series from large-scale climate oscillations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.