Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Fair and Robust Face Parsing for Generative AI: A Multi-Objective Approach (2502.04391v1)

Published 6 Feb 2025 in cs.CV and cs.AI

Abstract: Face parsing is a fundamental task in computer vision, enabling applications such as identity verification, facial editing, and controllable image synthesis. However, existing face parsing models often lack fairness and robustness, leading to biased segmentation across demographic groups and errors under occlusions, noise, and domain shifts. These limitations affect downstream face synthesis, where segmentation biases can degrade generative model outputs. We propose a multi-objective learning framework that optimizes accuracy, fairness, and robustness in face parsing. Our approach introduces a homotopy-based loss function that dynamically adjusts the importance of these objectives during training. To evaluate its impact, we compare multi-objective and single-objective U-Net models in a GAN-based face synthesis pipeline (Pix2PixHD). Our results show that fairness-aware and robust segmentation improves photorealism and consistency in face generation. Additionally, we conduct preliminary experiments using ControlNet, a structured conditioning model for diffusion-based synthesis, to explore how segmentation quality influences guided image generation. Our findings demonstrate that multi-objective face parsing improves demographic consistency and robustness, leading to higher-quality GAN-based synthesis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.