In Praise of Stubbornness: An Empirical Case for Cognitive-Dissonance Aware Continual Update of Knowledge in LLMs (2502.04390v2)
Abstract: Through systematic empirical investigation, we uncover a fundamental and concerning property of LLMs: while they can safely learn facts that don't contradict their knowledge, attempting to update facts with contradictory information triggers catastrophic corruption of unrelated knowledge. Unlike humans, who naturally resist contradictory information, these models indiscriminately accept contradictions, leading to devastating interference, destroying up to 80% of unrelated knowledge even when learning as few as 10-100 contradicting facts. To understand whether this interference could be mitigated through selective plasticity, we experiment with targeted network updates, distinguishing between previously used (stubborn) and rarely used (plastic) neurons. We uncover another asymmetry: while sparing frequently-used neurons significantly improves retention of existing knowledge for non-contradictory updates (98% vs 93% with standard updates), contradictory updates trigger catastrophic interference regardless of targeting strategy. This effect which persists across tested model scales (GPT-2 to GPT-J-6B), suggests a fundamental limitation in how neural networks handle contradictions. Finally, we demonstrate that contradictory information can be reliably detected (95%+ accuracy) using simple model features, offering a potential protective mechanism. These findings motivate new architectures that can, like humans, naturally resist contradictions rather than allowing destructive overwrites.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.