Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cyclic quantum causal modelling with a graph separation theorem (2502.04168v2)

Published 6 Feb 2025 in quant-ph, math.ST, stat.ML, and stat.TH

Abstract: Causal modelling frameworks link observable correlations to causal explanations, which is a crucial aspect of science. These models represent causal relationships through directed graphs, with vertices and edges denoting systems and transformations within a theory. Most studies focus on acyclic causal graphs, where well-defined probability rules and powerful graph-theoretic properties like the d-separation theorem apply. However, understanding complex feedback processes and exotic fundamental scenarios with causal loops requires cyclic causal models, where such results do not generally hold. While progress has been made in classical cyclic causal models, challenges remain in uniquely fixing probability distributions and identifying graph-separation properties applicable in general cyclic models. In cyclic quantum scenarios, existing frameworks have focussed on a subset of possible cyclic causal scenarios, with graph-separation properties yet unexplored. This work proposes a framework applicable to all consistent quantum and classical cyclic causal models on finite-dimensional systems. We address these challenges by introducing a robust probability rule and a novel graph-separation property, p-separation, which we prove to be sound and complete for all such models. Our approach maps cyclic causal models to acyclic ones with post-selection, leveraging the post-selected quantum teleportation protocol. We characterize these protocols and their success probabilities along the way. We also establish connections between this formalism and other classical and quantum frameworks to inform a more unified perspective on causality. This provides a foundation for more general cyclic causal discovery algorithms and to systematically extend open problems and techniques from acyclic informational networks (e.g., certification of non-classicality) to cyclic causal structures and networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.