Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Dynamic Factor Models for High-dimensional Matrix-valued Time Series (2409.08354v2)

Published 12 Sep 2024 in econ.EM

Abstract: High-dimensional matrix-valued time series are of significant interest in economics and finance, with prominent examples including cross region macroeconomic panels and firms' financial data panels. We introduce a class of Bayesian matrix dynamic factor models that utilize matrix structures to identify more interpretable factor patterns and factor impacts. Our model accommodates time-varying volatility, adjusts for outliers, and allows cross-sectional correlations in the idiosyncratic components. To determine the dimension of the factor matrix, we employ an importance-sampling estimator based on the cross-entropy method to estimate marginal likelihoods. Through a series of Monte Carlo experiments, we show the properties of the factor estimators and the performance of the marginal likelihood estimator in correctly identifying the true dimensions of the factor matrices. Applying our model to a macroeconomic dataset and a financial dataset, we demonstrate its ability in unveiling interesting features within matrix-valued time series.

Summary

We haven't generated a summary for this paper yet.