Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bilevel Multi-Armed Bandit-Based Hierarchical Reinforcement Learning for Interaction-Aware Self-Driving at Unsignalized Intersections (2502.03960v1)

Published 6 Feb 2025 in cs.RO

Abstract: In this work, we present BiM-ACPPO, a bilevel multi-armed bandit-based hierarchical reinforcement learning framework for interaction-aware decision-making and planning at unsignalized intersections. Essentially, it proactively takes the uncertainties associated with surrounding vehicles (SVs) into consideration, which encompass those stemming from the driver's intention, interactive behaviors, and the varying number of SVs. Intermediate decision variables are introduced to enable the high-level RL policy to provide an interaction-aware reference, for guiding low-level model predictive control (MPC) and further enhancing the generalization ability of the proposed framework. By leveraging the structured nature of self-driving at unsignalized intersections, the training problem of the RL policy is modeled as a bilevel curriculum learning task, which is addressed by the proposed Exp3.S-based BiMAB algorithm. It is noteworthy that the training curricula are dynamically adjusted, thereby facilitating the sample efficiency of the RL training process. Comparative experiments are conducted in the high-fidelity CARLA simulator, and the results indicate that our approach achieves superior performance compared to all baseline methods. Furthermore, experimental results in two new urban driving scenarios clearly demonstrate the commendable generalization performance of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.