2000 character limit reached
Adaptation of Task Goal States from Prior Knowledge
Published 6 Feb 2025 in cs.RO and cs.AI | (2502.03918v1)
Abstract: This paper presents a framework to define a task with freedom and variability in its goal state. A robot could use this to observe the execution of a task and target a different goal from the observed one; a goal that is still compatible with the task description but would be easier for the robot to execute. We define the model of an environment state and an environment variation, and present experiments on how to interactively create the variation from a single task demonstration and how to use this variation to create an execution plan for bringing any environment into the goal state.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.