ICE-closed subcategories and epibricks over recollements (2502.03887v1)
Abstract: Let $( \mathcal{A{'}},\mathcal{A},\mathcal{A{''}},i\ast,i_\ast,i_!,j_!,j\ast,j_\ast)$ be a recollement of abelian categories. We proved that every ICE-closed subcategory (resp. epibrick, monobrick) in $\mathcal{A{'}}$ or $\mathcal{A{''}}$ can be extended to an ICE-closed subcategories (resp. epibrick, monobrick) in $\mathcal{A}$, and the assignment $\mathcal{C}\mapsto j*(\mathcal{C})$ defines a bijection between certain ICE-closed subcategories in $\mathcal{A}$ and those in $\mathcal{A}''$. Moreover, the ICE-closed subcategory $\mathcal{C}$ of $\mathcal{A}$ containing $i_\ast(\mathcal{A{'}})$ admits a new recollement relative to ICE-closed subcategories $\mathcal{A{'}}$ and $j\ast(\mathcal{C})$ which induced from the original recollement when $j_!{j\ast(\mathcal{C})}\subset\mathcal{C}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.