Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bayesian Time-Varying Meta-Analysis via Hierarchical Mean-Variance Random-effects Models (2502.03809v1)

Published 6 Feb 2025 in stat.ME

Abstract: Meta-analysis is widely used to integrate results from multiple experiments to obtain generalized insights. Since meta-analysis datasets are often heteroscedastic due to varying subgroups and temporal heterogeneity arising from experiments conducted at different time points, the typical meta-analysis approach, which assumes homoscedasticity, fails to adequately address this heteroscedasticity among experiments. This paper proposes a new Bayesian estimation method that simultaneously shrinks estimates of the means and variances of experiments using a hierarchical Bayesian approach while accounting for time effects through a Gaussian process. This method connects experiments via the hierarchical framework, enabling "borrowing strength" between experiments to achieve high-precision estimates of each experiment's mean. The method can flexibly capture potential time trends in datasets by modeling time effects with the Gaussian process. We demonstrate the effectiveness of the proposed method through simulation studies and illustrate its practical utility using a real marketing promotions dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.