Papers
Topics
Authors
Recent
2000 character limit reached

Intent Representation Learning with Large Language Model for Recommendation (2502.03307v4)

Published 5 Feb 2025 in cs.IR

Abstract: Intent-based recommender systems have garnered significant attention for uncovering latent fine-grained preferences. Intents, as underlying factors of interactions, are crucial for improving recommendation interpretability. Most methods define intents as learnable parameters updated alongside interactions. However, existing frameworks often overlook textual information (e.g., user reviews, item descriptions), which is crucial for alleviating the sparsity of interaction intents. Exploring these multimodal intents, especially the inherent differences in representation spaces, poses two key challenges: i) How to align multimodal intents and effectively mitigate noise issues; ii) How to extract and match latent key intents across modalities. To tackle these challenges, we propose a model-agnostic framework, Intent Representation Learning with LLM (IRLLRec), which leverages LLMs to construct multimodal intents and enhance recommendations. Specifically, IRLLRec employs a dual-tower architecture to learn multimodal intent representations. Next, we propose pairwise and translation alignment to eliminate inter-modal differences and enhance robustness against noisy input features. Finally, to better match textual and interaction-based intents, we employ momentum distillation to perform teacher-student learning on fused intent representations. Empirical evaluations on three datasets show that our IRLLRec framework outperforms baselines.Code available at https://github.com/wangyu0627/IRLLRec.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.