Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Gait-Net-augmented Implicit Kino-dynamic MPC for Dynamic Variable-frequency Humanoid Locomotion over Discrete Terrains (2502.02934v3)

Published 5 Feb 2025 in cs.RO, cs.SY, and eess.SY

Abstract: Reduced-order-model-based optimal control techniques for humanoid locomotion struggle to adapt step duration and placement simultaneously in dynamic walking gaits due to their reliance on fixed-time discretization, which limits responsiveness to various disturbances and results in suboptimal performance in challenging conditions. In this work, we propose a Gait-Net-augmented implicit kino-dynamic model-predictive control (MPC) to simultaneously optimize step location, step duration, and contact forces for natural variable-frequency locomotion. The proposed method incorporates a Gait-Net-augmented Sequential Convex MPC algorithm to solve multi-linearly constrained variables by iterative quadratic programs. At its core, a lightweight Gait-frequency Network (Gait-Net) determines the preferred step duration in terms of variable MPC sampling times, simplifying step duration optimization to the parameter level. Additionally, it enhances and updates the spatial reference trajectory within each sequential iteration by incorporating local solutions, allowing the projection of kinematic constraints to the design of reference trajectories. We validate the proposed algorithm in high-fidelity simulations and on small-size humanoid hardware, demonstrating its capability for variable-frequency and 3-D discrete terrain locomotion with only a one-step preview of terrain data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube