Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LLM-USO: Large Language Model-based Universal Sizing Optimizer (2502.02764v1)

Published 4 Feb 2025 in cs.AR and cs.LG

Abstract: The design of analog circuits is a cornerstone of integrated circuit (IC) development, requiring the optimization of complex, interconnected sub-structures such as amplifiers, comparators, and buffers. Traditionally, this process relies heavily on expert human knowledge to refine design objectives by carefully tuning sub-components while accounting for their interdependencies. Existing methods, such as Bayesian Optimization (BO), offer a mathematically driven approach for efficiently navigating large design spaces. However, these methods fall short in two critical areas compared to human expertise: (i) they lack the semantic understanding of the sizing solution space and its direct correlation with design objectives before optimization, and (ii) they fail to reuse knowledge gained from optimizing similar sub-structures across different circuits. To overcome these limitations, we propose the LLM-based Universal Sizing Optimizer (LLM-USO), which introduces a novel method for knowledge representation to encode circuit design knowledge in a structured text format. This representation enables the systematic reuse of optimization insights for circuits with similar sub-structures. LLM-USO employs a hybrid framework that integrates BO with LLMs and a learning summary module. This approach serves to: (i) infuse domain-specific knowledge into the BO process and (ii) facilitate knowledge transfer across circuits, mirroring the cognitive strategies of expert designers. Specifically, LLM-USO constructs a knowledge summary mechanism to distill and apply design insights from one circuit to related ones. It also incorporates a knowledge summary critiquing mechanism to ensure the accuracy and quality of the summaries and employs BO-guided suggestion filtering to identify optimal design points efficiently.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube