Papers
Topics
Authors
Recent
2000 character limit reached

IMDPrompter: Adapting SAM to Image Manipulation Detection by Cross-View Automated Prompt Learning (2502.02454v4)

Published 4 Feb 2025 in cs.CV

Abstract: Using extensive training data from SA-1B, the Segment Anything Model (SAM) has demonstrated exceptional generalization and zero-shot capabilities, attracting widespread attention in areas such as medical image segmentation and remote sensing image segmentation. However, its performance in the field of image manipulation detection remains largely unexplored and unconfirmed. There are two main challenges in applying SAM to image manipulation detection: a) reliance on manual prompts, and b) the difficulty of single-view information in supporting cross-dataset generalization. To address these challenges, we develops a cross-view prompt learning paradigm called IMDPrompter based on SAM. Benefiting from the design of automated prompts, IMDPrompter no longer relies on manual guidance, enabling automated detection and localization. Additionally, we propose components such as Cross-view Feature Perception, Optimal Prompt Selection, and Cross-View Prompt Consistency, which facilitate cross-view perceptual learning and guide SAM to generate accurate masks. Extensive experimental results from five datasets (CASIA, Columbia, Coverage, IMD2020, and NIST16) validate the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.