Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Subspace Inference for the Laplace Approximation of Bayesian Neural Networks (2502.02345v1)

Published 4 Feb 2025 in cs.LG

Abstract: Subspace inference for neural networks assumes that a subspace of their parameter space suffices to produce a reliable uncertainty quantification. In this work, we mathematically derive the optimal subspace model to a Bayesian inference scenario based on the Laplace approximation. We demonstrate empirically that, in the optimal case, often a fraction of parameters less than 1% is sufficient to obtain a reliable estimate of the full Laplace approximation. Since the optimal solution is derived, we can evaluate all other subspace models against a baseline. In addition, we give an approximation of our method that is applicable to larger problem settings, in which the optimal solution is not computable, and compare it to existing subspace models from the literature. In general, our approximation scheme outperforms previous work. Furthermore, we present a metric to qualitatively compare different subspace models even if the exact Laplace approximation is unknown.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.