Exploring Generative Networks for Manifolds with Non-Trivial Topology (2502.02127v1)
Abstract: The expressive power of neural networks in modelling non-trivial distributions can in principle be exploited to bypass topological freezing and critical slowing down in simulations of lattice field theories. Some popular approaches are unable to sample correctly non-trivial topology, which may lead to some classes of configurations not being generated. In this contribution, we present a novel generative method inspired by a model previously introduced in the ML community (GFlowNets). We demonstrate its efficiency at exploring ergodically configuration manifolds with non-trivial topology through applications such as triple ring models and two-dimensional lattice scalar field theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.