Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum expanders and property (T) discrete quantum groups (2502.01974v1)

Published 4 Feb 2025 in math.OA, math-ph, and math.MP

Abstract: Families of expander graphs were first constructed by Margulis from discrete groups with property (T). Within the framework of quantum information theory, several authors have generalised the notion of an expander graph to the setting of quantum channels. In this work, we use discrete quantum groups with property (T) to construct quantum expanders in two ways. The first approach obtains a quantum expander family by constructing the requisite quantum channels directly from finite-dimensional irreducible unitary representations, extending earlier work of Harrow using groups. The second approach directly generalises Margulis' original construction and is based on a quantum analogue of a Schreier graph using the theory of coideals. To obtain examples of quantum expanders, we apply our machinery to discrete quantum groups with property (T) coming from compact bicrossed products.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: