Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Texture Image Synthesis Using Spatial GAN Based on Vision Transformers (2502.01842v2)

Published 3 Feb 2025 in cs.CV and cs.AI

Abstract: Texture synthesis is a fundamental task in computer vision, whose goal is to generate visually realistic and structurally coherent textures for a wide range of applications, from graphics to scientific simulations. While traditional methods like tiling and patch-based techniques often struggle with complex textures, recent advancements in deep learning have transformed this field. In this paper, we propose ViT-SGAN, a new hybrid model that fuses Vision Transformers (ViTs) with a Spatial Generative Adversarial Network (SGAN) to address the limitations of previous methods. By incorporating specialized texture descriptors such as mean-variance (mu, sigma) and textons into the self-attention mechanism of ViTs, our model achieves superior texture synthesis. This approach enhances the model's capacity to capture complex spatial dependencies, leading to improved texture quality that is superior to state-of-the-art models, especially for regular and irregular textures. Comparison experiments with metrics such as FID, IS, SSIM, and LPIPS demonstrate the substantial improvement of ViT-SGAN, which underlines its efficiency in generating diverse realistic textures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: