Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The in-context inductive biases of vision-language models differ across modalities (2502.01530v2)

Published 3 Feb 2025 in cs.CV, cs.CL, and cs.LG

Abstract: Inductive biases are what allow learners to make guesses in the absence of conclusive evidence. These biases have often been studied in cognitive science using concepts or categories -- e.g. by testing how humans generalize a new category from a few examples that leave the category boundary ambiguous. We use these approaches to study generalization in foundation models during in-context learning. Modern foundation models can condition on both vision and text, and differences in how they interpret and learn from these different modalities is an emerging area of study. Here, we study how their generalizations vary by the modality in which stimuli are presented, and the way the stimuli are described in text. We study these biases with three different experimental paradigms, across three different vision-LLMs. We find that the models generally show some bias towards generalizing according to shape over color. This shape bias tends to be amplified when the examples are presented visually. By contrast, when examples are presented in text, the ordering of adjectives affects generalization. However, the extent of these effects vary across models and paradigms. These results help to reveal how vision-LLMs represent different types of inputs in context, and may have practical implications for the use of vision-LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 9 likes.

Upgrade to Pro to view all of the tweets about this paper: