Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model (2502.01191v1)

Published 3 Feb 2025 in cs.CV

Abstract: Concept Bottleneck Models (CBMs) aim to enhance interpretability by predicting human-understandable concepts as intermediates for decision-making. However, these models often face challenges in ensuring reliable concept representations, which can propagate to downstream tasks and undermine robustness, especially under distribution shifts. Two inherent issues contribute to concept unreliability: sensitivity to concept-irrelevant features (e.g., background variations) and lack of semantic consistency for the same concept across different samples. To address these limitations, we propose the Reliability-Enhanced Concept Embedding Model (RECEM), which introduces a two-fold strategy: Concept-Level Disentanglement to separate irrelevant features from concept-relevant information and a Concept Mixup mechanism to ensure semantic alignment across samples. These mechanisms work together to improve concept reliability, enabling the model to focus on meaningful object attributes and generate faithful concept representations. Experimental results demonstrate that RECEM consistently outperforms existing baselines across multiple datasets, showing superior performance under background and domain shifts. These findings highlight the effectiveness of disentanglement and alignment strategies in enhancing both reliability and robustness in CBMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.