Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning to Learn Weight Generation via Local Consistency Diffusion (2502.01117v3)

Published 3 Feb 2025 in cs.LG, cs.AI, and cs.CV

Abstract: Diffusion-based algorithms have emerged as promising techniques for weight generation. However, existing solutions are limited by two challenges: generalizability and local target assignment. The former arises from the inherent lack of cross-task transferability in existing single-level optimization methods, limiting the model's performance on new tasks. The latter lies in existing research modeling only global optimal weights, neglecting the supervision signals in local target weights. Moreover, naively assigning local target weights causes local-global inconsistency. To address these issues, we propose Mc-Di, which integrates the diffusion algorithm with meta-learning for better generalizability. Furthermore, we extend the vanilla diffusion into a local consistency diffusion algorithm. Our theory and experiments demonstrate that it can learn from local targets while maintaining consistency with the global optima. We validate Mc-Di's superior accuracy and inference efficiency in tasks that require frequent weight updates, including transfer learning, few-shot learning, domain generalization, and LLM adaptation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.