Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling (2502.00814v2)

Published 2 Feb 2025 in cs.LG and cs.CL

Abstract: Reinforcement Learning from Human Feedback (RLHF) has achieved considerable success in aligning LLMs by modeling human preferences with a learnable reward model and employing a reinforcement learning algorithm to maximize the reward model's scores. However, these reward models are susceptible to exploitation through various superficial confounding factors, with length bias emerging as a particularly significant concern. Moreover, while the pronounced impact of length bias on preference modeling suggests that LLMs possess an inherent sensitivity to length perception, our preliminary investigations reveal that fine-tuned LLMs consistently struggle to adhere to explicit length instructions. To address these two limitations, we propose a novel framework wherein the reward model explicitly differentiates between human semantic preferences and response length requirements. Specifically, we introduce a $\textbf{R}$esponse-$\textbf{c}$onditioned $\textbf{B}$radley-$\textbf{T}$erry (Rc-BT) model that enhances the model's capability in length bias mitigating and length instruction following, through training on our augmented dataset. Furthermore, we propose the Rc-RM and Rc-DPO algorithm to leverage the Rc-BT model for reward modeling and direct policy optimization (DPO) of LLMs, simultaneously mitigating length bias and promoting adherence to length instructions. Extensive experiments across various foundational models and datasets demonstrate the effectiveness and generalizability of our approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.