Papers
Topics
Authors
Recent
2000 character limit reached

Learned Bayesian Cramér-Rao Bound for Unknown Measurement Models Using Score Neural Networks (2502.00724v2)

Published 2 Feb 2025 in eess.SP, cs.AI, cs.LG, and stat.ML

Abstract: The Bayesian Cram\'er-Rao bound (BCRB) is a crucial tool in signal processing for assessing the fundamental limitations of any estimation problem as well as benchmarking within a Bayesian frameworks. However, the BCRB cannot be computed without full knowledge of the prior and the measurement distributions. In this work, we propose a fully learned Bayesian Cram\'er-Rao bound (LBCRB) that learns both the prior and the measurement distributions. Specifically, we suggest two approaches to obtain the LBCRB: the Posterior Approach and the Measurement-Prior Approach. The Posterior Approach provides a simple method to obtain the LBCRB, whereas the Measurement-Prior Approach enables us to incorporate domain knowledge to improve the sample complexity and {interpretability}. To achieve this, we introduce a Physics-encoded score neural network which enables us to easily incorporate such domain knowledge into a neural network. We {study the learning} errors of the two suggested approaches theoretically, and validate them numerically. We demonstrate the two approaches on several signal processing examples, including a linear measurement problem with unknown mixing and Gaussian noise covariance matrices, frequency estimation, and quantized measurement. In addition, we test our approach on a nonlinear signal processing problem of frequency estimation with real-world underwater ambient noise.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.