Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective (2502.00604v1)

Published 2 Feb 2025 in cs.LG, cs.AI, and physics.comp-ph

Abstract: Multi-task learning through composite loss functions is fundamental to modern deep learning, yet optimizing competing objectives remains challenging. We present new theoretical and practical approaches for addressing directional conflicts between loss terms, demonstrating their effectiveness in physics-informed neural networks (PINNs) where such conflicts are particularly challenging to resolve. Through theoretical analysis, we demonstrate how these conflicts limit first-order methods and show that second-order optimization naturally resolves them through implicit gradient alignment. We prove that SOAP, a recently proposed quasi-Newton method, efficiently approximates the Hessian preconditioner, enabling breakthrough performance in PINNs: state-of-the-art results on 10 challenging PDE benchmarks, including the first successful application to turbulent flows with Reynolds numbers up to 10,000, with 2-10x accuracy improvements over existing methods. We also introduce a novel gradient alignment score that generalizes cosine similarity to multiple gradients, providing a practical tool for analyzing optimization dynamics. Our findings establish frameworks for understanding and resolving gradient conflicts, with broad implications for optimization beyond scientific computing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube