Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transition Transfer $Q$-Learning for Composite Markov Decision Processes (2502.00534v1)

Published 1 Feb 2025 in stat.ML and cs.LG

Abstract: To bridge the gap between empirical success and theoretical understanding in transfer reinforcement learning (RL), we study a principled approach with provable performance guarantees. We introduce a novel composite MDP framework where high-dimensional transition dynamics are modeled as the sum of a low-rank component representing shared structure and a sparse component capturing task-specific variations. This relaxes the common assumption of purely low-rank transition models, allowing for more realistic scenarios where tasks share core dynamics but maintain individual variations. We introduce UCB-TQL (Upper Confidence Bound Transfer Q-Learning), designed for transfer RL scenarios where multiple tasks share core linear MDP dynamics but diverge along sparse dimensions. When applying UCB-TQL to a target task after training on a source task with sufficient trajectories, we achieve a regret bound of $\tilde{O}(\sqrt{eH5N})$ that scales independently of the ambient dimension. Here, $N$ represents the number of trajectories in the target task, while $e$ quantifies the sparse differences between tasks. This result demonstrates substantial improvement over single task RL by effectively leveraging their structural similarities. Our theoretical analysis provides rigorous guarantees for how UCB-TQL simultaneously exploits shared dynamics while adapting to task-specific variations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: