Serial-Dependence and Persistence Robust Inference in Predictive Regressions (2502.00475v1)
Abstract: This paper introduces a new method for testing the statistical significance of estimated parameters in predictive regressions. The approach features a new family of test statistics that are robust to the degree of persistence of the predictors. Importantly, the method accounts for serial correlation and conditional heteroskedasticity without requiring any corrections or adjustments. This is achieved through a mechanism embedded within the test statistics that effectively decouples serial dependence present in the data. The limiting null distributions of these test statistics are shown to follow a chi-square distribution, and their asymptotic power under local alternatives is derived. A comprehensive set of simulation experiments illustrates their finite sample size and power properties.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.