Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Shape from Semantics: 3D Shape Generation from Multi-View Semantics (2502.00360v1)

Published 1 Feb 2025 in cs.CV and cs.GR

Abstract: We propose Shape from Semantics'', which is able to create 3D models whose geometry and appearance match given semantics when observed from different views. TraditionalShape from X'' tasks usually use visual input (e.g., RGB images or depth maps) to reconstruct geometry, imposing strict constraints that limit creative explorations. As applications, works like Shadow Art and Wire Art often struggle to grasp the embedded semantics of their design through direct observation and rely heavily on specific setups for proper display. To address these limitations, our framework uses semantics as input, greatly expanding the design space to create objects that integrate multiple semantic elements and are easily discernible by observers. Considering that this task requires a rich imagination, we adopt various generative models and structure-to-detail pipelines. Specifically, we adopt multi-semantics Score Distillation Sampling (SDS) to distill 3D geometry and appearance from 2D diffusion models, ensuring that the initial shape is consistent with the semantic input. We then use image restoration and video generation models to add more details as supervision. Finally, we introduce neural signed distance field (SDF) representation to achieve detailed shape reconstruction. Our framework generates meshes with complex details, well-structured geometry, coherent textures, and smooth transitions, resulting in visually appealing and eye-catching designs. Project page: https://shapefromsemantics.github.io

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com