Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sparse Gradient Compression for Fine-Tuning Large Language Models (2502.00311v1)

Published 1 Feb 2025 in cs.LG

Abstract: Fine-tuning LLMs for downstream tasks has become increasingly crucial due to their widespread use and the growing availability of open-source models. However, the high memory costs associated with fine-tuning remain a significant challenge, especially as models increase in size. To address this, parameter efficient fine-tuning (PEFT) methods have been proposed to minimize the number of parameters required for fine-tuning LLMs. However, these approaches often tie the number of optimizer states to dimensions of model parameters, limiting flexibility and control during fine-tuning. In this paper, we propose sparse gradient compression (SGC), a training regime designed to address these limitations. Our approach leverages inherent sparsity in gradients to compress optimizer states by projecting them onto a low-dimensonal subspace, with dimensionality independent of the original model's parameters. By enabling optimizer state updates in an arbitrary low-dimensional subspace, SGC offers a flexible tradeoff between memory efficiency and performance. We demonstrate through experiments that SGC can decrease memory usage in optimizer states more effectively than existing PEFT methods. Furthermore, by fine-tuning LLMs on various downstream tasks, we show that SGC can deliver superior performance while substantially lowering optimizer state memory requirements, particularly in both data-limited and memory-limited settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.