Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Decentralized Inference for Spatial Data Using Low-Rank Models (2502.00309v2)

Published 1 Feb 2025 in stat.ML, cs.LG, stat.CO, and stat.ME

Abstract: Advancements in information technology have enabled the creation of massive spatial datasets, driving the need for scalable and efficient computational methodologies. While offering viable solutions, centralized frameworks are limited by vulnerabilities such as single-point failures and communication bottlenecks. This paper presents a decentralized framework tailored for parameter inference in spatial low-rank models to address these challenges. A key obstacle arises from the spatial dependence among observations, which prevents the log-likelihood from being expressed as a summation-a critical requirement for decentralized optimization approaches. To overcome this challenge, we propose a novel objective function leveraging the evidence lower bound, which facilitates the use of decentralized optimization techniques. Our approach employs a block descent method integrated with multi-consensus and dynamic consensus averaging for effective parameter optimization. We prove the convexity of the new objective function in the vicinity of the true parameters, ensuring the convergence of the proposed method. Additionally, we present the first theoretical results establishing the consistency and asymptotic normality of the estimator within the context of spatial low-rank models. Extensive simulations and real-world data experiments corroborate these theoretical findings, showcasing the robustness and scalability of the framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: