Papers
Topics
Authors
Recent
2000 character limit reached

Simultaneous Estimation of Manipulation Skill and Hand Grasp Force from Forearm Ultrasound Images (2502.00275v1)

Published 1 Feb 2025 in cs.RO, cs.CV, cs.ET, and cs.HC

Abstract: Accurate estimation of human hand configuration and the forces they exert is critical for effective teleoperation and skill transfer in robotic manipulation. A deeper understanding of human interactions with objects can further enhance teleoperation performance. To address this need, researchers have explored methods to capture and translate human manipulation skills and applied forces to robotic systems. Among these, biosignal-based approaches, particularly those using forearm ultrasound data, have shown significant potential for estimating hand movements and finger forces. In this study, we present a method for simultaneously estimating manipulation skills and applied hand force using forearm ultrasound data. Data collected from seven participants were used to train deep learning models for classifying manipulation skills and estimating grasp force. Our models achieved an average classification accuracy of 94.87 percent plus or minus 10.16 percent for manipulation skills and an average root mean square error (RMSE) of 0.51 plus or minus 0.19 Newtons for force estimation, as evaluated using five-fold cross-validation. These results highlight the effectiveness of forearm ultrasound in advancing human-machine interfacing and robotic teleoperation for complex manipulation tasks. This work enables new and effective possibilities for human-robot skill transfer and tele-manipulation, bridging the gap between human dexterity and robotic control.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.