Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A critical evaluation of longitudinal proportional effect models (2502.00214v3)

Published 31 Jan 2025 in stat.ME

Abstract: Nonlinear longitudinal proportional effect models have been proposed to improve power and provide direct estimates of the proportional treatment effect in randomized clinical trials. These models assume a fixed proportional treatment effect over time, which can lead to bias and Type I error inflation when the assumption is violated. Even when the proportional effect assumption holds, these models are biased, and their inference is sensitive to the labeling of treatment groups. Typically, this bias favors the active group, inflates Type I error, and can result in one-sided testing. Conversely, the bias can make it more difficult to detect treatment harm, creating a safety concern.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com