Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying treatment differences in confirmatory trials under non-proportional hazards (1908.10502v3)

Published 28 Aug 2019 in stat.ME and stat.AP

Abstract: Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. With the emergence of immunotherapy and novel targeted therapies, departure from the proportional hazard assumption is not rare in nowadays clinical research. Under non-proportional hazards, the hazard ratio does not have a straightforward clinical interpretation, and the log-rank test is no longer the most powerful statistical test even though it is still valid. Nevertheless, the log-rank test and the hazard ratio are still the primary analysis tools, and traditional approaches such as sample size increase are still proposed to account for the impact of non-proportional hazards. The weighed log-rank test and the test based on the restricted mean survival time (RMST) are receiving a lot of attention as a potential alternative to the log-rank test. We conduct a simulation study comparing the performance and operating characteristics of the log-rank test, the weighted log-rank test and the test based on the RMST, including a treatment effect estimation, under different non-proportional hazards patterns. Results show that, under non-proportional hazards, the hazard ratio and weighted hazard ratio have no straightforward clinical interpretation whereas the RMST ratio can be interpreted regardless of the proportional hazards assumption. In terms of power, the RMST achieves a similar performance when compared to the log-rank test.

Summary

We haven't generated a summary for this paper yet.