A Checks-and-Balances Framework for Context-Aware Ethical AI Alignment (2502.00136v3)
Abstract: This paper introduces a checks-and-balances framework for ethical alignment of LLMs, inspired by three-branch governmental systems. It implements three independent yet interacting components: LLMs as the executive branch for knowledge generation, DIKE as the legislative branch establishing ethical guardrails, and ERIS as the judicial branch for contextual interpretation. Beyond structural separation, we address a fundamental challenge: regulating emotion to shape behaviors. Drawing from psychological theories where managing emotional responses prevents harmful behaviors, we develop a self-supervised learning pipeline that maps emotions to linguistic behaviors, enabling precise behavioral modulation through emotional conditioning. By integrating this approach with adversarial testing, our framework demonstrates how DIKE and ERIS direct linguistic behaviors toward ethical outcomes while preserving independence throughout knowledge generation, ethical oversight, and contextual interpretation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.