Papers
Topics
Authors
Recent
2000 character limit reached

Mobile Robot Navigation Using Hand-Drawn Maps: A Vision Language Model Approach (2502.00114v2)

Published 31 Jan 2025 in cs.RO and cs.CV

Abstract: Hand-drawn maps can be used to convey navigation instructions between humans and robots in a natural and efficient manner. However, these maps can often contain inaccuracies such as scale distortions and missing landmarks which present challenges for mobile robot navigation. This paper introduces a novel Hand-drawn Map Navigation (HAM-Nav) architecture that leverages pre-trained vision LLMs (VLMs) for robot navigation across diverse environments, hand-drawing styles, and robot embodiments, even in the presence of map inaccuracies. HAM-Nav integrates a unique Selective Visual Association Prompting approach for topological map-based position estimation and navigation planning as well as a Predictive Navigation Plan Parser to infer missing landmarks. Extensive experiments were conducted in photorealistic simulated environments, using both wheeled and legged robots, demonstrating the effectiveness of HAM-Nav in terms of navigation success rates and Success weighted by Path Length. Furthermore, a user study in real-world environments highlighted the practical utility of hand-drawn maps for robot navigation as well as successful navigation outcomes compared against a non-hand-drawn map approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: