Papers
Topics
Authors
Recent
Search
2000 character limit reached

Influence of color correction on pathology detection in Capsule Endoscopy

Published 31 Jan 2025 in cs.CV, cs.AI, and cs.LG | (2502.00076v1)

Abstract: Pathology detection in Wireless Capsule Endoscopy (WCE) using deep learning has been explored in the recent past. However, deep learning models can be influenced by the color quality of the dataset used to train them, impacting detection, segmentation and classification tasks. In this work, we evaluate the impact of color correction on pathology detection using two prominent object detection models: Retinanet and YOLOv5. We first generate two color corrected versions of a popular WCE dataset (i.e., SEE-AI dataset) using two different color correction functions. We then evaluate the performance of the Retinanet and YOLOv5 on the original and color corrected versions of the dataset. The results reveal that color correction makes the models generate larger bounding boxes and larger intersection areas with the ground truth annotations. Furthermore, color correction leads to an increased number of false positives for certain pathologies. However, these effects do not translate into a consistent improvement in performance metrics such as F1-scores, IoU, and AP50. The code is available at https://github.com/agossouema2011/WCE2024. Keywords: Wireless Capsule Endoscopy, Color correction, Retinanet, YOLOv5, Detection

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.