Papers
Topics
Authors
Recent
2000 character limit reached

Towards Recommender Systems LLMs Playground (RecSysLLMsP): Exploring Polarization and Engagement in Simulated Social Networks (2502.00055v1)

Published 29 Jan 2025 in cs.SI, cs.AI, cs.CY, cs.HC, and cs.IR

Abstract: Given the exponential advancement in AI technologies and the potential escalation of harmful effects from recommendation systems, it is crucial to simulate and evaluate these effects early on. Doing so can help prevent possible damage to both societies and technology companies. This paper introduces the Recommender Systems LLMs Playground (RecSysLLMsP), a novel simulation framework leveraging LLMs to explore the impacts of different content recommendation setups on user engagement and polarization in social networks. By creating diverse AI agents (AgentPrompts) with descriptive, static, and dynamic attributes, we assess their autonomous behaviour across three scenarios: Plurality, Balanced, and Similarity. Our findings reveal that the Similarity Scenario, which aligns content with user preferences, maximizes engagement while potentially fostering echo chambers. Conversely, the Plurality Scenario promotes diverse interactions but produces mixed engagement results. Our study emphasizes the need for a careful balance in recommender system designs to enhance user satisfaction while mitigating societal polarization. It underscores the unique value and challenges of incorporating LLMs into simulation environments. The benefits of RecSysLLMsP lie in its potential to calculate polarization effects, which is crucial for assessing societal impacts and determining user engagement levels with diverse recommender system setups. This advantage is essential for developing and maintaining a successful business model for social media companies. However, the study's limitations revolve around accurately emulating reality. Future efforts should validate the similarity in behaviour between real humans and AgentPrompts and establish metrics for measuring polarization scores.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube