Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MALT: Mechanistic Ablation of Lossy Translation in LLMs for a Low-Resource Language: Urdu (2502.00041v1)

Published 27 Jan 2025 in cs.CL

Abstract: LLMs are predominantly trained on English data, which leads to a significant drop in performance on low-resource languages. Understanding how LLMs handle these languages is crucial for improving their effectiveness. This study focuses on Urdu as a use case for exploring the challenges faced by LLMs in processing low-resource languages. LLMs primarily reason in English when prompted in another language, with the final layers acting as translators to convert the English response into the target language. This study finds that even for low-resource languages, the internal latent response of LLMs in English is quite coherent; however, the translation features are lossy and result in poor translations, leading to reduced performance. By mechanistically removing these translation features and using a separate translation model to translate the internal latent response of LLM, the performance of LLMs improves significantly while also preserving the cultural nuances of the input in low-resource languages.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.