A MacMahon Analysis View of Cylindric Partitions (2501.19272v1)
Abstract: We study cylindric partitions with two-element profiles using MacMahon's partition analysis. We find explicit formulas for the generating functions of the number of cylindric partitions by first finding the recurrences using partition analysis and then solving them. We also note some q-series identities related to these objects that show the manifestly positive nature of some alternating series. We generalize the proven identities and conjecture new polynomial refinements of Andrews-Gordon and Bressoud identities, which are companions to Foda-Quano's refinements. Finally, using a variant of the Bailey lemma, we present many new infinite hierarchies of polynomial identities.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.