Papers
Topics
Authors
Recent
2000 character limit reached

Jackpot! Alignment as a Maximal Lottery

Published 31 Jan 2025 in cs.AI, cs.LG, and econ.TH | (2501.19266v1)

Abstract: Reinforcement Learning from Human Feedback (RLHF), the standard for aligning LLMs with human values, is known to fail to satisfy properties that are intuitively desirable, such as respecting the preferences of the majority \cite{ge2024axioms}. To overcome these issues, we propose the use of a probabilistic Social Choice rule called \emph{maximal lotteries} as a replacement for RLHF. We show that a family of alignment techniques, namely Nash Learning from Human Feedback (NLHF) \cite{munos2023nash} and variants, approximate maximal lottery outcomes and thus inherit its beneficial properties. We confirm experimentally that our proposed methodology handles situations that arise when working with preferences more robustly than standard RLHF, including supporting the preferences of the majority, providing principled ways of handling non-transitivities in the preference data, and robustness to irrelevant alternatives. This results in systems that better incorporate human values and respect human intentions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.