Genetic AI: Evolutionary Games for ab initio dynamic Multi-Objective Optimization
Abstract: We introduce Genetic AI, a novel method for multi-objective optimization without external parameters or predefined weights. The method can be applied to all problems that can be formulated in matrix form and allows for a data-less training of AI models. Without employing predefined rules or training data, Genetic AI first converts the input data into genes and organisms. In a simulation from first principles, these genes and organisms compete for fitness, where their behavior is governed by universal evolutionary strategies. We present four evolutionary strategies: Dominant, Altruistic, Balanced and Selfish and show how a linear combination can be employed in a fully self-consistent evolutionary game. Investigating fitness and evolutionary stable equilibriums, Genetic AI helps solving optimization problems with a set of predefined, discrete solutions that change dynamically. We show the universality of the approach on two decision problems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.