Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fairness Analysis of CLIP-Based Foundation Models for X-Ray Image Classification (2501.19086v1)

Published 31 Jan 2025 in cs.CV and cs.AI

Abstract: X-ray imaging is pivotal in medical diagnostics, offering non-invasive insights into a range of health conditions. Recently, vision-LLMs, such as the Contrastive Language-Image Pretraining (CLIP) model, have demonstrated potential in improving diagnostic accuracy by leveraging large-scale image-text datasets. However, since CLIP was not initially designed for medical images, several CLIP-like models trained specifically on medical images have been developed. Despite their enhanced performance, issues of fairness - particularly regarding demographic attributes - remain largely unaddressed. In this study, we perform a comprehensive fairness analysis of CLIP-like models applied to X-ray image classification. We assess their performance and fairness across diverse patient demographics and disease categories using zero-shot inference and various fine-tuning techniques, including Linear Probing, Multilayer Perceptron (MLP), Low-Rank Adaptation (LoRA), and full fine-tuning. Our results indicate that while fine-tuning improves model accuracy, fairness concerns persist, highlighting the need for further fairness interventions in these foundational models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube